

NCTS Dark Physics Workshop

January 09–11, 2020 – Lecture Room 4A, NCTS, 3rd General Building, NTHU, Hsinchu, Taiwan

Decays of doubly charmed baryon

Fanrong Xu Jinan University

NCTS, Hsinchu 2020.1.11

In collaboration with Hai-Yang Cheng, Guanbao Meng and Jinqi Zou

Outline

- Introduction: recent progress
- Theoretical framework
- Results and discussion

Introduction

Why charm?

Life moves on! Face up to reality: "C".

Charm meson sector

• Direct CP violation: first CPV in charm has been observed.

$$\Delta A_{CP} \equiv A_{CP} (D^0 \to K^- K^+) - A_{CP} (D^0 \to \pi^- \pi^+)$$
$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$
$$CP \text{ violation observed at } 5.3 \sigma !!$$

LHCb, Phys. Rev. Lett. 122, 211803 (2019)

 Indirect CPV in D-Dbar mixing: the first successful quantitative attempt to understand x and y simultaneously.

Parameter	Avg value (HFLAV 2018) [%]
x	$0.36^{+0.21}_{-0.16}$
у	$0.67\substack{+0.06\\-0.13}$

H.Umeeda, FX, F. Yu and H.-n. Li, to appear

Charmed baryons

• Classification of Charmed Baryons

• Singly charmed baryons

Progress in Λ_c^+ : BESIII

- Based on 35 days' data collecting at **BESIII**, 16 papers including 7 PRLs on Λ_c^+ have been published so far.
- About 20 channels have been measured, relevant PDG values has been revised.
 PDG2014
 PDG2019
 - Absolute branching fraction of Golden mode: $\Lambda_c^+ \rightarrow pK\pi$.
 - new technique to measure neutron final state.
 - Single Cabibbo suppressed processes have been touched.
 - Reach the sensitivity of decay asymmetry.

$\Gamma(\rho \overline{K}^0 \pi^0) / \Gamma(\rho K$	⁻ π ⁺)				Γ ₇ /Γ ₂
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.66 \pm 0.05 \pm 0.07$	774	ALAM	98	CLE2	$e^+ e^- \approx \Upsilon(4S)$
Γ(p K⁰η)/Γ(pK ⁻	π ⁺)			Г8/Г2	
Unseen decay r	nodes of the	η are included.			
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.25 \pm 0.04 \pm 0.04$	57	AMMAR	95	CLE2	$e^+ e^- \approx \Upsilon(4S)$
$\Gamma(\rho \overline{K}^0 \pi^+ \pi^-) / \Gamma($	$(pK^-\pi^+)$				2/رو۲
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.51±0.06 OUR AVE	RAGE				
$0.52 \pm 0.04 \pm 0.05$	985	ALAM	98	CLE2	$e^+ e^- \approx \Upsilon(4S)$
$0.43 \pm 0.12 \pm 0.04$	83	AVERY	91	CLEO	e^+e^- 10.5 GeV
$0.98 \!\pm\! 0.36 \!\pm\! 0.08$	12	BARLAG	90 D	NA32	π^- 230 GeV
$\Gamma(\rho K^- \pi^+ \pi^0)/\Gamma($	(ρ K ⁻ π ⁺)				Г ₁₀ /Г ₂
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.67 \pm 0.04 \pm 0.11$	2606	ALAM	98	CLE2	$e^+ e^- \approx \Upsilon(4S)$
$\Gamma(pK^*(892)^-\pi^+)$)/Γ(p <u></u> π ⁰ π	r ⁺ π ⁻)			Г ₁₁ /Г9
Unseen decay r	nodes of the	e K*(892) [—] are in	lude	d.	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.44±0.14	17	ALEEV	94	BIS2	nN 20-70 GeV
$\Gamma(\rho(K^-\pi^+)_{\text{nonres}})$	$mant \pi^0)/$			Γ ₁₂ /Γ ₂	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.73 \pm 0.12 \pm 0.05$	67	BOZEK	93	NA32	π^- Cu 230 GeV

$(pK_S^{\circ}\pi^{\circ})/tota$						17/1
VALUE (%)	EVTS	DOCUMENT ID	TECN	COM	IMENT	
1.96±0.13 OUR FIT	Error in	cludes scale factor	of 1.1		_	
$1.87 \pm 0.13 \pm 0.05$	558	ABLIKIM 16	BES3	e+ e	$e^- \rightarrow \Lambda_c \Lambda_c$, 4.599 GeV
Γ(ρK⁰_Sπ⁰)/Γ(ρ Measurements	Kπ⁺) s given as a	$\overline{\kappa}^0$ ratio have been	en divideo	l by 2 t	o convert to	Γ_7/Γ_2 a κ_S^0 ratio.
VALUE	EVTS	DOCUMENT I)	TECN	COMMENT	
0.314 ± 0.018 OUR 0.33 ± 0.03 ± 0.04	FIT 774	ALAM	98	CLE2	$e^+e^-\approx$	T(45)
$\Gamma(nK_S^0\pi^+)/\Gamma_{tota}$	al Evere	DOCUMENT	0	TECN	COMMENT	Г ₈ /Г
VALUE (%)	<u>EVIS</u>	DOCOMENT		TECN	COMMENT	
$1.82 \pm 0.23 \pm 0.11$	83	ABLIKIM	17H	BES3	<i>e</i> ⊤ <i>e</i> − at 4	.6 GeV
Γ(p ^{K0} η)/Γ(pK ⁻ Unseen decay	-π+) modes of t	he $η$ are included.		TECN	COMMENT	Γ ₉ /Γ ₂
VALUE	<u>EV15</u>	DOCOMENTI	05	CL EQ	COMMENT	20(4.0)
J.25±0.04±0.04	57	AMMAR	95	CLE2	$e \cdot e \approx$	1(45)
$\Gamma(\rho K_{S}^{0}\pi^{+}\pi^{-})/\Gamma_{NLUE(\%)}$ 1.59±0.12 OUR FIT	total EVTS Error in	DOCUMENT ID cludes scale factor	of 12		IMENT	Г ₁₀ /Г
$1.53 \pm 0.11 \pm 0.09$	485	ABLIKIM 10	BES3	e+ 6	$e^- \rightarrow \Lambda_c \overline{\Lambda}_c$, 4.599 GeV
$\Gamma(\rho K_S^0 \pi^+ \pi^-)/\Gamma$	(рК- т	⁺)				Γ ₁₀ /Γ ₂
Measurements	s given as a	K ^o ratio have bee	en divideo	by 2 t	to convert to	a K ^o _S ratio.
	<u>EVTS</u>	DOCUMENT ID	1	ECN	COMMENT	
0.255±0.015 OUR		includes scale fact	or of 1.1.			
$1.26 \pm 0.02 \pm 0.03$	985	ALAM	98 (1 E2	$e^+e^- \sim 1$	(45)
$0.20 \pm 0.02 \pm 0.03$	83	AVERY	91 0	LEO	$e^+e^- 10.5$	GeV
$0.49 \pm 0.18 \pm 0.04$	12	BARLAG	900 0	1432	π ⁻ 230 GeV	/
2.47 10.10 10.04		BrittErto	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1102	1 200 000	·
$\frac{\Gamma(\rho K^{-} \pi^{+} \pi^{0})}{\Gamma}$	total EVTS	DOCUMENT ID	TECN	COM	IMENT	Г11/Г
4.42±0.31 OUR FIT	Error in	cludes scale factor	of 1 5			
$4.53 \pm 0.23 \pm 0.30$	1849	ABLIKIM 16	BES3	e+ 6	$e^- \rightarrow \Lambda_c \overline{\Lambda}_c$, 4.599 GeV
Г(<i>рК</i> ⁻ π ⁺ π ⁰)/Г	(pK ⁻ π ⁺	-)	_			Γ_{11}/Γ_{2}

Progress in Λ_c^+ : BESIII

- Based on 35 days' data collecting at **BESIII**, 16 papers including 7 PRLs on Λ_c^+ have been published so far.
- Now new data collecting is being operated...

Prof. Haibo Li's WeChat Friend's Circle

Progress in Ξ_c

• First measurement of $\Xi_c^0 \to \Xi^- \pi^+$

 $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) = [9.51 \pm 2.10(\text{stat.}) \pm 0.88(\text{syst.})] \times 10^{-4}$

 $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = [1.80 \pm 0.50 (\text{stat.}) \pm 0.14 (\text{syst.})]\%$

Belle, PRL 122 (2019) 082001

 $(772\pm11) \times 10^{6} B\overline{B}$ pair

• The branching fraction of $\Xi_c^+ \to \Xi^0 \pi^+$ $\mathcal{B}(\bar{B}^0 \to \bar{\Lambda}_c^- \Xi_{c_-}^+) = [1.16 \pm 0.42 (\text{stat.}) \pm 0.15 (\text{syst.})] \times 10^{-3}$ $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (2.86 \pm 1.21 \pm 0.38) \times 10^{-2}$ Belle, 1904.12093 $\Gamma(\Xi_c^+ \to \Xi^0 \pi^+) / \Gamma(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (0.55 \pm 0.13 \pm 0.09)$ CLEO, PLB373(1996)261

$$\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) = (1.57 \pm 0.83)\%$$

Doubly charmed baryon

• First doubly charmed baryon is observed via $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

LHCb, PRL 119, 112001 (2017)

• First observation of two body decay

$$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$$

LHCb, PRL 121, 162002 (2018)

• Lifetime and precise mass of Ξ_{cc}^{++} have been measured.

$$\tau_{\Xi_{cc}^{++}} = 0.256^{+0.024}_{-0.022}(\text{stat}) \pm 0.014(\text{syst}) \text{ ps}$$

$$m_{-++} = 3621.55 \pm 0.23 \pm 0.30 \text{ MeV}$$

LHCb, 1911.08594 [hep-ex]

Recent study in theory

□ SU(3) approach

- C.Q. Geng, Y.K. Hsiao, Y.H. Lin and L.L. Liu, "Non-leptonic two-body weak decays of $\Lambda_c(2286)$ ", Phys. Lett. B776, 265 (2017).
- C.Q. Geng, Y. K. Hsiao, C.W. Liu and T. H. Tsai, "Charmed baryon weak decays with SU(3) flavor symmetry", JHEP 1711, 147 (2017).
- C.Q. Geng, Y. K. Hsiao, C.W. Liu and T. H. Tsai, "Anti-triplet charmed baryon decays with SU(3) flavor symmetry", Phys. Rev. D97,073006 (2018).
- C.Q. Geng, Y. K. Hsiao, C.W. Liu and T. H. Tsai, *"SU(3) symmetry breaking in charmed baryon decays"*, Euro. Phys. J. C 78, 593 (2018).
- C.Q. Geng, Y. K. Hsiao, C.W. Liu, T.H. Tsai, "Three-body charmed baryon decays with SU(3) flavor symmetry", Phys. Rev. D99, 073003 (2019).
- C.Q. Geng , C.W. Liu, T.H. Tsai, "Singly Cabibbo suppressed decays of Λ_c with SU(3) flavor symmetry", Phys. Lett. B790, 225 (2019).
- C.Q. Geng , C.W. Liu, T.H. Tsai, "Semileptonic Decays of Anti-triplet Charmed baryons", Phys. Lett. B792, 214 (2019).
- C.Q. Geng , C.W. Liu, T.H. Tsai, "Asymmetries of anti-triplet charmed baryon decays", Phys. Lett. B794, 19 (2019).
- C.Q. Geng , C.W. Liu, T.H. Tsai, "Charmed baryon weak decays with decuplet baryon and SU(3) flavor symmetry", Phys. Rev. D99, 114022(2019).
- J.Y. Cen, C.Q. Geng, C.W. Liu and T.H. Tsai, "Up-down asymmetries in charmed baryon three-body decays", Eur. Phys. J. C79, 946 (2019).
- H.J. Zhao, Yan-Li Wang, Y.-K. Hsiao, Y. Yu, "A diagrammatic analysis of two-body charmed baryon decays with flavor symmetry", 1811.07265

Recent study in theory

Calculation concerning factorizable contribution:

 $\,\circ\,\,$ a series of work by C.D. Lu, W. Wang, F.S. Yu, Z.X. Zhao...

Rescattering approach

o L.-J. Jiang, B. He, R.-H. Li, "Weak decays of doubly heavy baryons", Eur. Phys. J. C78(2018),961

Dynamic calculation based on pole model

- H.-Y. Cheng, X.-W. Kang, FX, "Singly Cabibbo-suppressed hadronic decays of Λ_c^+ ", Phys. Rev. D97, 074028 (2018)
- J. Zou, FX, G. Meng, H.-Y. Cheng, "Two-body hadronic weak decays of antitriplet charmed baryons", 1910.13626, accepted by Phys. Rev. D
- H.-Y. Cheng, G. Meng, FX, J. Zou, "Two-body weak decays of doubly charmed baryons", to appear

Theoretical working frame

Topological diagram approach

Factorizable contribution

Naïve factorization

$$M = \langle P\mathcal{B}_c | \mathcal{H}_{\text{eff}} | \mathcal{B}_{cc} \rangle = \begin{cases} \frac{G_F}{\sqrt{2}} V_{cs} V_{ud}^* a_1 \langle P | (\bar{u}d) | 0 \rangle \langle \mathcal{B}_c | (\bar{s}c) | \mathcal{B}_{cc} \rangle, \ P = \pi^+, \\ \frac{G_F}{\sqrt{2}} V_{cs} V_{ud}^* a_2 \langle P | (\bar{s}d) | 0 \rangle \langle \mathcal{B}_c | (\bar{u}c) | \mathcal{B}_{cc} \rangle, \ P = \overline{K}^0, \end{cases}$$

$$A^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_{cc}} - m_{\mathcal{B}_c}) f_1(q^2),$$

$$B^{\text{fac}} = -\frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_{cc}} + m_{\mathcal{B}_c}) g_1(q^2).$$

Factorizable contribution

• Wilson coefficient

$$a_1 = c_1 + \frac{c_2}{N_c}, a_2 = c_2 + \frac{c_1}{N_c}$$

• Baryon transition form factor

light-front quark model; light-cone sum rules; non-relativistic quark model
 MIT bag model

$$f_{1}^{\mathcal{B}_{f}\mathcal{B}_{i}}(q_{\max}^{2}) = \langle \mathcal{B}_{f} \uparrow | b_{q_{1}}^{\dagger} b_{q_{2}} | \mathcal{B}_{i} \uparrow \rangle \int d^{3}\boldsymbol{r}(u_{q_{1}}(r)u_{q_{2}}(r) + v_{q_{1}}(r)v_{q_{2}}(r)),$$

$$g_{1}^{\mathcal{B}_{f}\mathcal{B}_{i}}(q_{\max}^{2}) = \langle \mathcal{B}_{f} \uparrow | b_{q_{1}}^{\dagger} b_{q_{2}}\sigma_{z} | \mathcal{B}_{i} \uparrow \rangle \int d^{3}\boldsymbol{r}(u_{q_{1}}(r)u_{q_{2}}(r) - \frac{1}{3}v_{q_{1}}(r)v_{q_{2}}(r)),$$

Factorizable contribution: form factor

• Baryon transition form factor: comparison

$\mathcal{B}_{cc} ightarrow \mathcal{B}_{c}$ -		$f_1($	$m_{\pi}^2)$		$g_1(m_\pi^2)$				
	MIT	$\mathrm{LFQM}(\mathrm{I})$	$\mathrm{LFQM}(\mathrm{II})$	QSR	MIT	$\mathrm{LFQM}(\mathrm{I})$	$\mathrm{LFQM}(\mathrm{II})$	QSR	
$\Xi_{cc}^{++} \to \Xi_c^+$	0.577	0.920	0.734	0.664	0.222	0.259	0.172	0.095	
$\Xi_{cc}^{++}\to\Xi_{c}^{'+}$	0.386	0.541	0.407	0.360	0.703	0.731	0.496	0.208	
$\Xi_{cc}^+ \to \Xi_c^0$	0.606	0.920	0.734	0.664	0.243	0.259	0.172	0.095	
$\Xi_{cc}^+ \to \Xi_c^{'0}$	0.435	0.541	0.407	0.360	0.758	0.731	0.496	0.208	
$\Omega_{cc}^+\to\Omega_c^0$	0.505	0.758		0.420	0.947	1.025		0.150	

Nonfactorizable: pole model

• Pole model: initial baryon decays through a pole,

S-wave amplitude: excited state $\frac{1}{2}$ should be taken into account. p-wave amplitude: ground state $\frac{1}{2}$ contributes.

$$A^{\text{pole}} = -\sum_{B_n^*(1/2^-)} \left[\frac{g_{B_f B_n^* P} b_{n^* i}}{m_i - m_{n^*}} + \frac{b_{fn^*} g_{B_n^* B_i P}}{m_f - m_{n^*}} \right] \quad \text{requires more effort}$$

$$B^{\text{pole}} = \sum_{B_n} \left[\frac{g_{B_f B_n P} a_{ni}}{m_i - m_n} + \frac{a_{fn} g_{B_n B_i P}}{m_f - m_n} \right],$$

$$\frac{1}{2^+} \left(\frac{1^+, \frac{1^-}{2^-}}{2^+} \right)^{\frac{1^+}{2^+}} \left(\frac{1^+, \frac{1^-}{2^-}}{2^+} \right)^{\frac{1^+}{2^+}} \right)^{\frac{1^+}{2^+}} \left(\frac{1^+, \frac{1^-}{2^-}}{2^+} \right)^{\frac{1^+}{2^+}}$$

Current algebra: soft pseudoscalar final state

- Soft-pseudoscalar limit
- Goldberger-Treiman relation

$$A^{\text{com}} = -\frac{\sqrt{2}}{f_{P^a}} \langle \mathcal{B}_f | [Q_5^a, H_{\text{eff}}^{\text{PV}}] | \mathcal{B}_i \rangle = \frac{\sqrt{2}}{f_{P^a}} \langle \mathcal{B}_f | [Q^a, H_{\text{eff}}^{\text{PC}}] | \mathcal{B}_i \rangle \Longrightarrow \quad \mathcal{A}_{\mathcal{B}'\mathcal{B}}$$
$$B^{\text{ca}} = \frac{\sqrt{2}}{f_{P^a}} \sum_{\mathcal{B}_n} \left[\underbrace{g_{\mathcal{B}_f \mathcal{B}_n}^A \underbrace{m_f + m_n}_{m_i - m_n}}_{m_i - m_n} \underbrace{a_{ni}} + a_{fn} \frac{m_i + m_n}{m_f - m_n} g_{\mathcal{B}_n \mathcal{B}_i}^A \right]$$

limitation: only applicable in the decays to soft pseudoscalar modes

Baryon matrix elements & strong coupling

- The two nonperturbative quantities is model dependent.
- In MIT bag model

$$\begin{aligned} a_{\mathcal{B}'\mathcal{B}} &\equiv \langle \mathcal{B}' | \mathcal{H}_{\text{eff}}^{\text{PC}} | \mathcal{B} \rangle = \frac{G_F}{2\sqrt{2}} V_{cs} V_{ud}^* c_- \langle \mathcal{B}' | O_- | \mathcal{B} \rangle, \\ &\quad \langle \Xi_c^+ | O_- | \Xi_{cc}^+ \rangle = 4\sqrt{6} X_2(4\pi), \qquad \langle \Xi_c'^+ | O_- | \Xi_{cc}^+ \rangle = -\frac{4\sqrt{2}}{3} X_1(4\pi), \\ g_{\mathcal{B}'\mathcal{B}}^{A(P)} &= \langle \mathcal{B}' \uparrow | b_{q_1}^\dagger b_{q_2} \sigma_z | \mathcal{B} \uparrow \rangle \int d^3 \boldsymbol{r} \left(u_{q_1} u_{q_2} - \frac{1}{3} v_{q_1} v_{q_2} \right) \\ &\quad g_{\Xi_{cc}^+ \Xi_{cc}^+}^{A(\pi^+)} = -\frac{1}{3} (4\pi Z_1), \qquad g_{\Xi_{cc}^+ \Xi_{cc}^+}^{A(\pi^0)} = \frac{1}{6} (4\pi Z_1), \qquad g_{\Xi_{cc}^+ \Xi_{cc}^+}^{A(\eta_8)} = -\frac{1}{6\sqrt{3}} (4\pi Z_1) \end{aligned}$$

Results of doubly charmed baryon and discussion

Predictions to Cabibbo-allowed process

	Afac	Acom	Atot	pfac	DC2	Ptot	10	
Channel	$A^{\rm lac}$	Acom	A^{tot}	$B^{\rm rac}$	B^{ca}	$B^{\rm tot}$	$\mathcal{B}_{ ext{theo}}$	$\alpha_{\rm theo}$
$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$	7.40	-10.79	-3.38	-15.06	18.91	3.85	0.69	-0.41
$\Xi_{cc}^{++} \to \Xi_c^{\prime+} \pi^+$	4.49	-0.04	4.45	-48.50	0.06	-48.44	4.65	-0.84
$\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^0$	-2.67	0	-2.67	25.11	0	25.11	1.36	-0.89
$\Xi_{cc}^{+}\to \Xi_{c}^{0}\pi^{+}$	8.52	10.79	19.31	-16.46	-0.08	-16.54	3.84	-0.31
$\Xi_{cc}^+ \to \Xi_c^{\prime 0} \pi^+$	5.05	0.04	5.09	-52.31	-17.63	-69.94	1.55	-0.73
$\Xi_{cc}^+ \to \Xi_c^+ \pi^0$	0	15.26	15.26	0	-10.49	-10.49	2.38	-0.25
$\Xi_{cc}^+ \to \Xi_c^{\prime +} \pi^0$	0	0.06	0.06	0	-24.97	-24.97	0.17	-0.03
$\Xi_{cc}^+ \to \Xi_c^+ \eta$	0	21.75	21.75	0	4.86	4.86	4.18	0.07
$\Xi_{cc}^+ \to \Xi_c^{\prime +} \eta$	0	0.09	0.09	0	-17.87	-17.87	0.05	-0.07
$\Xi_{cc}^+\to \Sigma_c^{++}K^-$	0	0.07	0.07	0	22.14	22.14	0.13	0.04
$\Xi_{cc}^+ o \Lambda_c^+ \overline{K}^0$	-3.37	8.90	5.53	5.62	-0.07	5.55	0.31	0.40
$\Xi_{cc}^+ \to \Sigma_c^+ \overline{K}^0$	-2.17	0.04	-2.14	19.37	15.64	35.02	0.38	-0.62
$\Xi_{cc}^+\to \Omega_c^0 K^+$	0	0.05	0.05	0	-22.98	-22.98	0.06	-0.03
$\Omega_{cc}^+ \to \Omega_c^0 \pi^+$	5.71	0	5.71	-67.48	0	-67.48	3.96	-0.83
$\Omega_{cc}^+ \to \Xi_c^+ \overline{K}^0$	2.62	-8.90	-6.28	-5.29	13.40	8.11	1.15	-0.45
$\Omega_{cc}^+ \to \Xi_c^{\prime +} \overline{K}^0$	-1.68	-0.04	-1.72	17.44	0.06	17.50	0.29	-0.88

Lifetime

 $\tau(\Xi_{cc}^{+}) = 0.45 \times 10^{-13} s$ $\tau(\Omega_{cc}^{+}) \quad (0.75 \sim 1.80) \times 10^{-13} s$ $\tau(\Omega_{cc}^{+}) = 1.28 \times 10^{-13} s$

> H.-Y. Cheng, Y.L. Shi, PRD98(2018) 113005

• Essential role of nonfactorizable contribution

$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$: the examining channel $\frac{\mathcal{B}(\Xi_{cc}^{++}\to\Xi_{c}^{+}\pi^{+})\times\mathcal{B}(\Xi_{c}^{+}\to pK^{-}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++}\to\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})\times\mathcal{B}(\Lambda_{c}^{+}\to pK^{-}\pi^{+})} = 0.035\pm0.009(\text{stat.})\pm0.003(\text{syst.})$ LHCb, PRL 121 (2018) 162002 $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (6.28 \pm 0.32)\%$ PDG2018 \leftarrow BESIII $\mathcal{B}(\Xi_c^+ \to pK^-\pi^+) = (0.45 \pm 0.21 \pm 0.07)\%$ Belle, PRD100(201 Belle, PRD100(2019) 031101 $\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+})} = 0.49 \pm 0.27$ $\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \approx \frac{2}{3} \mathcal{B}(\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^{*0}) \text{ assumption}$ $\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^{*0}) = 5.61\% \text{ T. Gutsche, et. al. PRD100(2019) 114037}$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+)_{\text{expt}} \approx (1.83 \pm 1.01)\% \text{ vs } \mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \approx 0.7\%$ more promising: $B(\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+}\pi^{+}) = 4.65\%$ 23

Ξ_{cc}^+ and Ω_{cc}^+ : the undiscovered ones

• The failure of searching Ξ_{cc}^+ through: $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+ \rightarrow p K^- \pi^+ K^- \pi^+$

LHCb, Sci. China Phys. Mech. Astron. 63 221062 (2020)

• The reason can be understood from our prediction:

$$\Xi_{cc}^{+} \to \Sigma_{c}^{++} K^{-} \to \Lambda_{c}^{+} K^{-} \pi^{+} \to p K^{-} \pi^{+} K^{-} \pi^{-}$$
$$B(\Xi_{cc}^{+} \to \Sigma_{c}^{++} K^{-}) = 0.13\%$$

- A suggested discovery channel for Ξ_{cc}^+ : $\Xi_{cc}^+ \to \Xi_c^0 \pi^+ \to \Xi^- \pi^+ \pi^+ \to \Lambda \pi^- \pi^+ \pi^+ \to p \pi^- \pi^- \pi^+ \pi^+$ $B(\Xi_{cc}^+ \to \Xi_c^0 \pi^+) = 3.84\%$ (large Br, this work) $B(\Xi_c^0 \to \Xi^- \pi^+) = 6.47\%$ (the largest channel) (1.70) EV & Mong H V Chong 1910 13626 accord
 - (J. Zou, FX, G. Meng, H.-Y. Cheng, 1910.13626, accepted by PRD)
- A similar suggested discovery channel for Ω_{cc}^+ :

 $B(\Omega_{cc}^+ \rightarrow \Omega_c^0 \pi^+)$ = 3.96% (this work)

Comparison

Mode	Our	Dhir	Gutsche et al.	Wang	Gerasimov	Ke	Shi
		et al. [8, 10]	[11,13,17]	$et \ al. \ [7]$	$et \ al. \ [14]$	$et \ al. \ [18]$	$et \ al. \ [12]$
$\overline{\Xi_{cc}^{++} \to \Xi_c^+ \pi^+}$	0.69	6.64 (N)	0.70	6.18	7.01	3.48 ± 0.46	3.1 ± 0.4
		$9.19~({ m H})$					
$\Xi_{cc}^{++}\to\Xi_c^{'+}\pi^+$	4.65	5.39~(N)	3.03	4.33	5.85	1.96 ± 0.24	0.93 ± 0.19
		$7.34~({\rm H})$					
$\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^0$	1.36	2.39 (N)	1.25				
		4.69 (H)					
-							

> Our calculation agrees with Gutsche et al.

- → For the mode of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$, Dhir-Shama's result disagrees with ours due to the sign of baryon transition form factor.
- All the nonperturbative quantities are calculated in a consistent model, which guarantees the relative signs at least.

Summary

- All the CF weak decays of doubly charmed baryon has been calculated.
- Receiving large destructive contribution, $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ is predicted to be 0.7%, which is consistent with LHCb experiment in the lower end.
- A discovery mode for Ξ_{cc}^+ is suggested from $\Xi_{cc}^+ \to \Xi_c^0 \pi^+$, due to its large constructive interference in S-wave amplitude.
- The discovery mode for Ω_{cc}^+ is also suggested from $\Omega_{cc}^+ \to \Omega_c^0 \pi^+$, with large pure factorization contribution.